Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Phthalic acid-4,6-dimethylpyrimidin-2amine (1/1)

Jian Li,* Zu-Pei Liang and Huan-Mei Guo

Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China Correspondence e-mail: zupeiliang@yahoo.com.cn

Received 11 April 2007; accepted 18 April 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.004 Å; R factor = 0.047; wR factor = 0.135; data-to-parameter ratio = 13.9.

In the crystal structure of the title compound, $C_8H_6O_4$. $C_6H_9N_3$, the two molecules interact *via* N-H···O and O-H···N hydrogen bonds, resulting in centrosymmetric clusters.

Related literature

For related literature, see: Ren et al. (2005).

Experimental

Crystal data

$C_8H_6O_4 \cdot C_6H_9N_3$
$M_r = 289.29$
Monoclinic, $P2_1/n$
a = 14.472(7) Å
b = 7.083 (4) Å
c = 14.563 (8) Å
$\beta = 112.108 \ (8)^{\circ}$

 $V = 1383.1 (12) \text{ Å}^3$ Z = 4Mo K α radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 294 (2) K $0.24 \times 0.22 \times 0.18 \text{ mm}$

Data collection

Bruker SMART CCD

diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 1997) $T_{\min} = 0.976, T_{\max} = 0.982$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.135$ S = 1.002801 reflections 202 parameters 3 restraints 7676 measured reflections 2801 independent reflections 1550 reflections with $I > 2\sigma(I)$ $R_{int} = 0.047$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.19\ e\ {\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.22\ e\ {\rm \AA}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$01 - H1 \cdots N1$ $04 - H4 \cdots N2^{i}$ $N3 - H3A \cdots O3^{i}$ $N3 - H3B \cdots O2$	0.82 0.82 0.881 (9) 0.890 (19)	1.81 1.84 2.027 (9) 1.984 (19)	2.613 (3) 2.656 (3) 2.890 (3) 2.865 (3)	168 172 166.2 (18) 170.7 (19)

Symmetry code: (i) -x, -y, -z + 1.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997; software used to prepare material for publication: *SHELXTL*.

This work was supported by the Natural Science Foundation of Weifang University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2370).

References

- Bruker (1997). SADABS (Version 2.01), SMART (Version 5.044), SAINT (Version 5.01) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Ren, Y.-H., Song, J.-R., Huang, J., Sun, X.-H. & Hu, H.-M. (2005). Acta Cryst. E**61**, 04013–04015.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o2673 [doi:10.1107/S1600536807019265]

Phthalic acid-4,6-dimethylpyrimidin-2-amine (1/1)

J. Li, Z.-P. Liang and H.-M. Guo

Comment

In this paper, the structure of the title compound, (I), a 1:1 adduct of phthalic acid and 4,6-dimethylpyrimidin-2-amine is reported. (Fig. 1). The geometrical parameters of 4,6-dimethylpyrimidin-2-amine molecule in (I) are similar to those in methyl N-[4-(4,6-dimethylpyrimidin-2-ylamino)thiocarbonyl]carbamate (Ren *et al.*, 2005). The heterocycle is essentially planar, within 0.014 (4) Å, and the dihedral angle between this plane and the benzene ring of the phthalic acid molecule is 21.3 (2) °. The crystal structure is stabilized by N—H···O and O—H···N hydrogen bonds (Fig. 2 and Table 1) to result in tetrameric associations of molecules, generated by inversion.

Experimental

A mixture of phthalic acid (0.01 mol) and 4,6-dimethylpyrimidin-2-amine (0.01 mol) in ethanol (20 ml) was refluxed for 0.5 h, and cooled. The solution was kept at room temperature for 12 d. Natural evaporation gave yellow blocks of (I) suitable for X-ray analysis.

Refinement

The N-bound H atoms were located in a difference map and their positions and Uiso values were freely refined.

The other H atoms were positioned geometrically (C—H = 0.93 Å, O—H = 0.82 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C, O)$.

Figures

Fig. 1. A tetrameric cluster in (I), drawn with 30% probability ellipsoids (arbitrary spheres for the H atoms; C-bound H atoms omitted for clarity). Hydrogen bonds are indicated by dashed lines. Symmetry code: (i) -x, -y, 1-z.

Phthalic acid-4,6-dimethylpyrimidin-2-amine (1/1)

Crystal data
$C_8H_6O_4$ · $C_6H_9N_3$
$M_r = 289.29$
Monoclinic, $P2_1/n$

. .

 $F_{000} = 608$ $D_x = 1.389 \text{ Mg m}^{-3}$ Mo K\alpha radiation

supplementary materials

Hall symbol: -P 2yn
<i>a</i> = 14.472 (7) Å
b = 7.083 (4) Å
c = 14.563 (8) Å
$\beta = 112.108 \ (8)^{\circ}$
$V = 1383.1 (12) \text{ Å}^3$
Z = 4

Data collection

$\lambda = 0.71073 \text{ Å}$
Cell parameters from 1525 reflections
$\theta = 2.5 - 24.9^{\circ}$
$\mu = 0.10 \text{ mm}^{-1}$
T = 294 (2) K
Block, yellow
$0.24 \times 0.22 \times 0.18 \text{ mm}$

Bruker SMART CCD diffractometer	2801 independent reflections
Radiation source: fine-focus sealed tube	1550 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.047$
T = 294(2) K	$\theta_{\text{max}} = 26.4^{\circ}$
ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1997)	$h = -18 \rightarrow 17$
$T_{\min} = 0.976, \ T_{\max} = 0.982$	$k = -7 \rightarrow 8$
7676 measured reflections	$l = -18 \rightarrow 15$

Refinement

Refinement on F^2	Hydrogen site location: difmap and geom
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.047$	$w = 1/[\sigma^2(F_o^2) + (0.0663P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.135$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.01	$\Delta \rho_{max} = 0.19 \text{ e } \text{\AA}^{-3}$
2801 reflections	$\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$
202 parameters	Extinction correction: none
3 restraints	
Primary atom site location: structure-invariant direct methods	

Secondary atom site location: difference Fourier map

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculat-

ing R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.32059 (11)	0.0730 (2)	0.57966 (11)	0.0495 (5)
H1	0.2975	0.1014	0.6213	0.074*
O2	0.17859 (12)	0.1937 (2)	0.47642 (12)	0.0536 (5)
03	0.10073 (11)	-0.1554 (3)	0.37463 (12)	0.0545 (5)
O4	0.04800 (11)	-0.0115 (2)	0.22987 (12)	0.0491 (5)
H4	-0.0064	-0.0495	0.2275	0.074*
N1	0.26384 (13)	0.1281 (3)	0.72801 (14)	0.0374 (5)
N2	0.13632 (13)	0.1101 (2)	0.79262 (13)	0.0382 (5)
N3	0.09888 (15)	0.1281 (3)	0.62636 (15)	0.0518 (6)
C1	0.25648 (17)	0.1130 (3)	0.49214 (17)	0.0380 (5)
C2	0.28825 (15)	0.0563 (3)	0.41096 (16)	0.0343 (5)
C3	0.38602 (16)	0.0813 (3)	0.42031 (17)	0.0408 (6)
Н3	0.4329	0.1256	0.4797	0.049*
C4	0.41430 (17)	0.0416 (3)	0.34297 (18)	0.0448 (6)
H4A	0.4804	0.0580	0.3501	0.054*
C5	0.34617 (17)	-0.0222 (3)	0.25536 (19)	0.0452 (6)
H5	0.3658	-0.0489	0.2029	0.054*
C6	0.24853 (17)	-0.0469 (3)	0.24448 (18)	0.0408 (6)
H6	0.2020	-0.0879	0.1841	0.049*
C7	0.21890 (15)	-0.0116 (3)	0.32215 (16)	0.0344 (5)
C8	0.11693 (16)	-0.0646 (3)	0.31263 (17)	0.0377 (5)
C9	0.16713 (16)	0.1230 (3)	0.71695 (17)	0.0370 (5)
C10	0.20528 (16)	0.1091 (3)	0.88369 (16)	0.0377 (5)
C11	0.30461 (17)	0.1199 (3)	0.89960 (17)	0.0444 (6)
H11	0.3525	0.1231	0.9637	0.053*
C12	0.33204 (16)	0.1260 (3)	0.81947 (17)	0.0393 (6)
C13	0.43803 (16)	0.1279 (4)	0.8298 (2)	0.0547 (7)
H13A	0.4579	0.0026	0.8200	0.082*
H13B	0.4790	0.1710	0.8950	0.082*
H13C	0.4458	0.2112	0.7812	0.082*
C14	0.16923 (18)	0.0961 (4)	0.96640 (17)	0.0509 (7)
H14A	0.1267	0.2017	0.9636	0.076*
H14B	0.2252	0.0973	1.0284	0.076*
H14C	0.1325	-0.0191	0.9606	0.076*
H3A	0.0349 (8)	0.138 (3)	0.6152 (15)	0.050 (7)*
H3B	0.1167 (14)	0.147 (3)	0.5749 (12)	0.051 (7)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

Atomic	displacement parameters	$(Å^2)$
--------	-------------------------	---------

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0374 (10)	0.0815 (13)	0.0298 (10)	0.0072 (8)	0.0131 (8)	0.0016 (8)
02	0.0453 (10)	0.0756 (12)	0.0422 (11)	0.0223 (9)	0.0192 (9)	0.0043 (8)

supplementary materials

O3	0.0366 (10)	0.0792 (13)	0.0503 (12)	-0.0038 (8)	0.0192 (9)	0.0189 (9)
O4	0.0318 (9)	0.0744 (12)	0.0411 (10)	-0.0030 (8)	0.0139 (9)	0.0074 (8)
N1	0.0288 (10)	0.0498 (12)	0.0334 (11)	-0.0021 (8)	0.0114 (9)	-0.0012 (8)
N2	0.0342 (11)	0.0511 (12)	0.0306 (11)	-0.0025 (9)	0.0135 (9)	-0.0026 (8)
N3	0.0286 (12)	0.0970 (17)	0.0292 (12)	0.0010 (11)	0.0104 (10)	0.0023 (11)
C1	0.0330 (13)	0.0462 (14)	0.0366 (14)	-0.0003 (11)	0.0153 (12)	0.0009 (11)
C2	0.0329 (12)	0.0393 (13)	0.0318 (13)	0.0028 (10)	0.0133 (11)	0.0045 (9)
C3	0.0279 (12)	0.0564 (16)	0.0369 (14)	0.0034 (11)	0.0110 (11)	0.0051 (11)
C4	0.0301 (13)	0.0609 (16)	0.0474 (16)	0.0045 (11)	0.0192 (13)	0.0072 (12)
C5	0.0435 (14)	0.0560 (16)	0.0457 (16)	0.0021 (12)	0.0279 (13)	-0.0014 (12)
C6	0.0398 (14)	0.0502 (15)	0.0342 (13)	-0.0019 (11)	0.0161 (11)	-0.0051 (10)
C7	0.0314 (12)	0.0396 (13)	0.0352 (13)	0.0012 (9)	0.0159 (11)	0.0026 (10)
C8	0.0328 (13)	0.0463 (14)	0.0347 (14)	0.0008 (10)	0.0135 (12)	-0.0020 (11)
C9	0.0331 (13)	0.0443 (14)	0.0339 (14)	-0.0036 (10)	0.0127 (12)	-0.0035 (10)
C10	0.0403 (14)	0.0416 (14)	0.0312 (13)	-0.0020 (10)	0.0132 (12)	-0.0024 (10)
C11	0.0368 (14)	0.0584 (16)	0.0314 (14)	-0.0009 (11)	0.0053 (11)	-0.0030 (11)
C12	0.0324 (12)	0.0424 (14)	0.0401 (15)	-0.0038 (10)	0.0104 (12)	-0.0051 (10)
C13	0.0347 (14)	0.0735 (19)	0.0535 (18)	-0.0026 (12)	0.0139 (13)	0.0005 (13)
C14	0.0509 (16)	0.0693 (18)	0.0356 (15)	0.0022 (13)	0.0196 (13)	0.0005 (12)

Geometric parameters (Å, °)

O1—C1	1.294 (3)	C4—C5	1.363 (3)
01—H1	0.8200	C4—H4A	0.9300
O2—C1	1.206 (2)	C5—C6	1.373 (3)
O3—C8	1.201 (3)	С5—Н5	0.9300
O4—C8	1.298 (3)	C6—C7	1.375 (3)
O4—H4	0.8200	С6—Н6	0.9300
N1-C12	1.326 (3)	C7—C8	1.478 (3)
N1—C9	1.348 (3)	C10—C11	1.369 (3)
N2—C10	1.326 (3)	C10—C14	1.485 (3)
N2—C9	1.338 (3)	C11—C12	1.367 (3)
N3—C9	1.318 (3)	C11—H11	0.9300
N3—H3A	0.881 (9)	C12—C13	1.484 (3)
N3—H3B	0.890 (19)	C13—H13A	0.9600
C1—C2	1.476 (3)	C13—H13B	0.9600
C2—C3	1.381 (3)	C13—H13C	0.9600
С2—С7	1.391 (3)	C14—H14A	0.9600
C3—C4	1.365 (3)	C14—H14B	0.9600
С3—Н3	0.9300	C14—H14C	0.9600
C1	109.5	O3—C8—O4	123.6 (2)
С8—О4—Н4	109.5	O3—C8—C7	122.4 (2)
C12—N1—C9	117.81 (19)	O4—C8—C7	113.88 (19)
C10—N2—C9	117.72 (19)	N3—C9—N2	118.0 (2)
C9—N3—H3A	121.8 (13)	N3—C9—N1	118.2 (2)
C9—N3—H3B	120.1 (13)	N2	123.8 (2)
H3A—N3—H3B	116.8 (15)	N2-C10-C11	121.1 (2)
O2-C1-O1	124.3 (2)	N2-C10-C14	116.7 (2)
O2—C1—C2	121.8 (2)	C11—C10—C14	122.2 (2)

O1—C1—C2	113.89 (19)	C12—C11—C10	118.7 (2)
C3—C2—C7	119.3 (2)	С12—С11—Н11	120.6
C3—C2—C1	120.2 (2)	C10-C11-H11	120.6
C7—C2—C1	120.37 (19)	N1-C12-C11	120.8 (2)
C4—C3—C2	120.4 (2)	N1—C12—C13	116.9 (2)
С4—С3—Н3	119.8	C11—C12—C13	122.3 (2)
С2—С3—Н3	119.8	C12—C13—H13A	109.5
C5—C4—C3	120.3 (2)	С12—С13—Н13В	109.5
С5—С4—Н4А	119.8	H13A—C13—H13B	109.5
C3—C4—H4A	119.8	C12—C13—H13C	109.5
C4—C5—C6	120.1 (2)	H13A—C13—H13C	109.5
С4—С5—Н5	120.0	H13B—C13—H13C	109.5
С6—С5—Н5	120.0	C10-C14-H14A	109.5
C5—C6—C7	120.5 (2)	C10-C14-H14B	109.5
С5—С6—Н6	119.7	H14A—C14—H14B	109.5
С7—С6—Н6	119.7	C10-C14-H14C	109.5
C6—C7—C2	119.2 (2)	H14A—C14—H14C	109.5
C6—C7—C8	119.1 (2)	H14B—C14—H14C	109.5
C2—C7—C8	121.39 (19)		
O2—C1—C2—C3	137.6 (2)	C2—C7—C8—O3	-44.3 (3)
O1—C1—C2—C3	-40.5 (3)	C6—C7—C8—O4	-47.6 (3)
O2—C1—C2—C7	-38.4 (3)	C2—C7—C8—O4	138.6 (2)
O1—C1—C2—C7	143.5 (2)	C10—N2—C9—N3	-178.6 (2)
C7—C2—C3—C4	0.6 (3)	C10-N2-C9-N1	2.5 (3)
C1—C2—C3—C4	-175.4 (2)	C12—N1—C9—N3	178.9 (2)
C2—C3—C4—C5	0.4 (4)	C12—N1—C9—N2	-2.1 (3)
C3—C4—C5—C6	-0.1 (4)	C9—N2—C10—C11	-0.3 (3)
C4—C5—C6—C7	-1.3 (3)	C9—N2—C10—C14	179.6 (2)
C5—C6—C7—C2	2.4 (3)	N2-C10-C11-C12	-2.0 (3)
C5—C6—C7—C8	-171.6 (2)	C14—C10—C11—C12	178.1 (2)
C3—C2—C7—C6	-2.0 (3)	C9—N1—C12—C11	-0.4 (3)
C1—C2—C7—C6	174.0 (2)	C9—N1—C12—C13	178.8 (2)
C3—C2—C7—C8	171.8 (2)	C10-C11-C12-N1	2.3 (3)
C1—C2—C7—C8	-12.2 (3)	C10-C11-C12-C13	-176.8 (2)
C6—C7—C8—O3	129.6 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
01—H1…N1	0.82	1.81	2.613 (3)	168
O4—H4…N2 ⁱ	0.82	1.84	2.656 (3)	172
N3—H3A···O3 ⁱ	0.881 (9)	2.027 (9)	2.890 (3)	166.2 (18)
N3—H3B…O2	0.890 (19)	1.984 (19)	2.865 (3)	170.7 (19)
Symmetry codes: (i) $-x, -y, -z+1$.				

